≜UCL

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Understanding rapidly varying processes

Sofia C. Olhede University College London

ERC Research Fellow Scientific Director, UCL Big Data Institute

Cantab Institute Cambridge, 30 November 2016

With co-authors, such as A. P. Guillaumin, A. M. Sykulski, J. J. Early, J. M. Lilly

Announcement — Theory of Big Data 3

Theory of Big Data 3

26-28 June 2017, London, UK

- Challenges in Spatial & Temporal Analysis
- High-Dimensional Estimation and Learning
- 3 Privacy-preserving inference
- 4 Tensors and statistical modelling

・ロッ ・雪 ・ ・ ヨ ・ ・ 日 ・

- Organizers: Sofia Olhede & Patrick Wolfe (UCL)
- Confirmed speakers: Jianqing Fan, Ming Yuan, Arthur Gretton, Arnak Dalalyan, Guy Nason, Heather Battey....
- Mailing list and additional information: http://www.ucl.ac.uk/bigdata-theory

How can we model rapidly-varying processes in time?

Ingredients

- 1 Mechanisms that generate data
- **2** Structure that facilitates analysis
- 3 Tools that can be understood

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへの

Gaussian Time Series

- We start from the analysis of a single time series {*X_t*}.
- To understand this object, we wish to model its mean

$$\mathbb{E}(X_t) = \mu(t), \tag{1}$$

and its covariance

$$\mathbb{C}\operatorname{ov}(X_t, X_{t-\tau}) = c(\tau, t).$$
 (2)

- $c(\tau, t)$ describes **evolving dependence**.
- If this is evolving rapidly, then we need to analyze smaller portions of data together.

Rapid variation

UCL

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへの

Global Drifter Program

Speed distribution of surface drifters (cm/s)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

How to model time series variation

- Simplest model is **modulation** (Parzen (1963) & Priestley (1965)).
- Modulation can make *Y_t* quite nonstationary.
- Let {g_t} be a (known?) deterministic sequence, and X_t a stationary latent processes. Take

$$Y_t = g_t X_t, \quad t \in \mathbb{Z}.$$

- Why not divide by g_t ?
- g_t may be zero and/or we observe Y_t superimposed with yet another process.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

More modelling

• We can always calculate

$$\hat{c}_{Y}^{(N)}(\tau) = rac{1}{N} \sum_{t=0}^{N- au-1} Y_{t} Y_{t+ au}.$$
 (

This has expectation

$$\bar{c}_{Y}^{(N)}(\tau) = c_{g}^{(N)}(\tau) \cdot c_{X}^{(N)}(\tau).$$
 (5)

Leads to the natural notion of an asymptotically stationary process. {Y_t} is an asymptotically stationary process (Parzen) if there exists a fixed function γ(τ) such that

$$\lim_{N\to\infty} \bar{c}_Y^{(N)}(\tau) = \gamma(\tau).$$

・ロン ・雪と ・ヨン ・ヨン

≜UCL

Fourier analysis

• As X_t is stationary it admits the representation

$$X_t = \mu + \int_{-rac{1}{2}}^{rac{1}{2}} dZ_x(f) e^{2i\pi ft},$$
 (6)

where the basic quantity of interest is the spectrum S(f).

- Here $S(f) df = \mathbb{E}\{|dZ_x(f)|^2\}$, and $dZ_x(f)$ is uncorrelated across f.
- Traditional theory claims X_t is "nearly stationary", where S(f) is evolving very slowly, and $S(f) \mapsto S_t(f)$.
- This has the consequence of dZ_x(f) nearly uncorrelated with dZ_x(f') if |f − f'| >> ε.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへ⊙

Whittle Pseudo-Likelihood

• If X_t was Gaussian, then we could infer its parameters using its likelihood function

$$\ell_{\mathcal{T}}(\theta) = -\frac{1}{2} \log |\Sigma(\theta)| - \frac{1}{2} X^{\mathcal{T}} \Sigma(\theta)^{-1} X, \quad \Sigma(\theta) = \mathbb{E} X X^{\mathcal{T}}.$$
(7)

Would like to form

$$\widehat{oldsymbol{ heta}}^{(t)} = rg\max_{oldsymbol{ heta}\in oldsymbol{\Theta}} \ell_t(oldsymbol{ heta}).$$

Instead commonly the Whittle likelihood is used:

$$\ell_{W}(\theta) = -\sum_{\omega \in \Omega_{N}} \left\{ \log S_{X}(\omega; \theta) + \frac{\hat{S}_{X}^{(N)}(\omega)}{S_{X}(\omega; \theta)} \right\}, \quad (8)$$

where Ω_N is the set of Fourier frequencies $2\pi I/N$ where $I = 0, \dots, N - 1$.

Computationally efficient; convenient; but far from exact (see Sykulski et al (2016), Anitescu *et al.* (2012), Stein *et al.* (2013), Dutta and Mondal (2014)). Speed versus computation.

And what of modulation?

• If we calculate the DFT $J_Y(\omega)$, then its empirical variance has expectation

$$\overline{S}_{Y}^{(N)}(\omega; \theta) = \mathbb{E}\Big\{\hat{S}_{Y}^{(N)}(\omega) \mid g_{0}, \cdots, g_{N-1}; \theta\Big\}.$$

This has form

$$\overline{S}_{Y}^{(N)}(\omega;\boldsymbol{\theta}) = \int_{-\pi}^{\pi} S_{X}(\omega-\lambda;\boldsymbol{\theta}) \left| G^{(N)}(\lambda) \right|^{2} d\lambda, \ \forall \omega \in [-\pi,\pi),$$
(9)

and

$$G^{(N)}(\omega) = \frac{1}{\sqrt{N}} \sum_{t=0}^{N-1} g_t e^{-i\omega t}.$$

Debiased

• We calculate

$$\ell_{M}(\theta) = -\sum_{\omega \in \Omega_{N}} \left\{ \log \overline{S}_{Y}^{(N)}(\omega;\theta) + \frac{\hat{S}_{Y}^{(N)}(\omega)}{\overline{S}_{Y}^{(N)}(\omega;\theta)} \right\}, \quad (10)$$

where Ω_N is the set of Fourier frequencies $2\pi I/N$ where $I = 0, \dots, N - 1$.

• This set of frequencies can be restricted when suitable using local frequencies (Robinson (1995)), and time-frequencies (van Bellegem and Dahlhaus (2006)).

≜UCL

Global Drifter Program

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Global Drifter Program

Speed distribution of surface drifters (cm/s)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Modelling oceanographic data

≜UCL

・ロト・日本・モート モー うへで

- Data from the Global Drifter Program (GDP, www.aoml.noaa.gov/phod/dac).
- The measurements include position, and often sea surface temperature, salinity and atmospheric pressure. In total, over 11,000 drifters have been deployed, with approximately 100 million position recordings obtained.
- The analysis of this data is crucial to our understanding of ocean circulation (Lumpkin 2007), which is known to play a primary role in determining the global climate system (Andrews, 2012).
- The Lagrangian velocity time series is modelled as a complex-valued time series, with the following 6-parameter power spectral density:

$$S(\omega) = \frac{A^2}{(\omega - f)^2 + \lambda^2} + \frac{B^2}{(\omega^2 + h^2)^{\alpha}},$$
 (11)

where ω is given in cycles per day.

≜UCL

Figure: Time-frequency of bivariate data.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣��

(b)

UCL

UCL

<□> <目> <目> <目> <目> <日> <000</p>

ロト (日) (王) (王) (王) (の)(

≜UCL

≜UCL

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

≜UCL

≜UCL

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ● ●

Simulated data

Sample size (N)	128	256	512	1024	2048	4096
Stationary frequency domain likelihood						
Bias (r)	-2.3481e-02	-3.2400e-02	-4.8112e-02	-6.9807e-02	-9.3332e-02	-1.1161e-01
Variance (r)	1.8163e-03	1.0760e-03	1.1422e-03	1.5550e-03	1.4045e-03	8.2890e-04
MSE(r)	2.3677e-03	2.1258e-03	3.4570e-03	6.4280e-03	1.0115e-02	1.3286e-02
Bias (σ)	2.5577e-02	5.4988e-02	8.9480e-02	1.3241e-01	1.7432e-01	2.0651e-01
Variance (σ)	3.3898e-03	2.8178e-03	3.3471e-03	4.4660e-03	3.9885e-03	2.1609e-03
MSE (σ)	4.0440e-03	5.8415e-03	1.1354e-02	2.1999e-02	3.4376e-02	4.4809e-02
CPU time (sec)	1.3083e-02	1.7776e-02	2.5743e-02	4.3666e-02	5.0948e-02	8.6940e-02
Nonstationary frequency domain likelihood						
Bias (r)	-4.6158e-03	-2.0129e-03	-1.4184e-03	-2.9047e-04	-2.6959e-04	8.8302e-05
Variance (r)	1.6508e-03	7.5379e-04	3.9819e-04	2.0710e-04	1.0674e-04	5.3236e-05
MSE(r)	1.6721e-03	7.5784e-04	4.0020e-04	2.0719e-04	1.0681e-04	5.3244e-05
Bias (σ)	-1.4999e-02	-8.8581e-03	-4.4302e-03	-2.5292e-03	-1.4125e-03	-9.1703e-04
Variance (σ)	2.2543e-03	1.1989e-03	6.4245e-04	3.4775e-04	2.0113e-04	1.0759e-04
MSE (σ)	2.4793e-03	1.2774e-03	6.6208e-04	3.5415e-04	2.0312e-04	1.0843e-04
CPU time (sec)	1.6814e-02	2.0272e-02	3.1397e-02	5.5925e-02	8.9997e-02	2.4147e-01

$$Z_t = r Z_{t-1} + \epsilon_t. \tag{12}$$

◆□ ▶ ◆■ ▶ ◆ ■ ▶ ◆ ■ ● の < @

here g_t is a phase-shift.

Definition (Modulated process with highly significant correlation contribution)

Assume that Y_t is a modulated process. We say that Y_t is a modulated process with a highly significant correlation contribution if for any τ there exists two constants $N_{\tau} \geq \tau$ and $\alpha_t > 0$ such that for $N \geq N_{\tau}$,

$$\left|\frac{1}{N}\sum_{t=0}^{N-1-\tau}g_tg_{t+\tau}\right| \ge \alpha_{\tau}.$$
(13)

With this definition, the performance of the Whittle likelihood can be understood.

Summary

- Traditional local stationary facilitates straight averaging of summary statistics, thereby facilitating inference.
- This opens up new and interesting questions in asymptotic statistics, which feed back into other areas
- Well-motivated theory drives new algorithms, interpretations for approaches that already see wide use in data science

References:

- Analysis of nonstationary modulated time series with applications to oceanographic flow measurements, (arXiv:1605.09107, with A. P. Guillaumin, A. M. Sykulski, J. J. Early, J. M. Lilly)
- The De-Biased Whittle Likelihood for Second-Order Stationary Stochastic Processes (arXiv:1605.06718, with A. M. Sykulski, & J. M. Lilly)
- Lagrangian Time Series Models for Ocean Surface Drifter Trajectories (with A. M. Sykulski, J. M. Lilly, E. Danioux, J. Royal Statistical Society Series C 65(1) (2016) 29-50).

Questions?

