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Fundamental question &

How can we model rapidly-varying processes in time? |

Mechanisms that generate data
Structure that facilitates analysis

Tools that can be understood
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e To understand this object, we wish to
model its mean

S0 ) " \WWWAWh"Mw'rw‘wW{’Wwl“NJ" WW \\

and its covariance o~

(COV(X,E7 Xt—q—) — C(T, t). (2) ﬂ""’“'

m

|
o If this is evolving rapidly, then we need to }UJ“M\L\’W\ ‘
|
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analyze smaller portions of data together. W ” ‘\n
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How to model time series variation #

Simplest model is modulation (Parzen
(1963) & Priestley (1965)).

Modulation can make Y} quite
nonstationary.

Let {g+} be a (known?) deterministic : ,
sequence, and X; a stationary latent LA '["1 'y
processes. Take L !

Yt = thta teZ. (3)

Why not divide by g;?

g+ may be zero and/or we observe Y; kL wHil
superimposed with yet another process.



More modelling =

We can always calculate

N 1 N—7-1
(A:s, )(T) = N Z Yt YH'T' (4)
t=0

This has expectation
(N N N i
() =) &0 6)

Leads to the natural notion of an
asymptotically stationary process. {Y:} is
an asymptotically stationary process
(Parzen) if there exists a fixed function
~(7) such that

lim &M () = ().
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Fourier analysis &

As X; is stationary it admits the
representation

1
Xe=p+ | dz(f)e,  (6) i+
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where the basic quantity of interest is the -

spectrum S(f). e EREE
Here S(f) df = E{|dZ.(f)|*}, and o

dZ.(f) is uncorrelated across f. @ /\

Traditional theory claims X; is “nearly /ﬁ ‘\‘

stationary”, where S(f) is evolving very ~ %.// |

slowly, and S(f) — S¢(f). . \

This has the consequence of dZ,(f) ,

nearly uncorrelated with dZ(f") if T e’ T

|f — ]| >>e.



Whittle Pseudo-Likelihood #

If X; was Gaussian, then we could infer its parameters using
its likelihood function

£7(0) = — 3 log [ 5(6)]| -

1
EXTZ(Q)*lX, Y(0) =EXXT.

(7)
Would like to form
61 = 0:(6).
arg max +(0)
Instead commonly the Whittle likelihood is used:

&(V)
IMOEESY {Iog Sx(w; 0) + SX("")} (8)
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where Qp is the set of Fourier frequencies 27//N where
I=0,...,N—1.

Computationally efficient; convenient; but far from exact (see
Sykulski et al (2016), Anitescu et al. (2012), Stein et al.
(2013), Dutta and Mondal (2014)). Speed versus
computation.



And what of modulation? #

If we calculate the DFT Jy(w), then its empirical variance has
expectation

— N A
S(Y )(w’ 0) = E{ngN)(w) ‘ 80, ", BN-1, 0}
This has form

— i 2
S(YN)(w; 0) = Sx(w—A; H)IG(N)()‘)’ dA, Vw € [-m, ),
(9)

and
N—
G(N) - —th‘
- L

We can compute g(y )(w; 0) in Nlog(N) once G has been
precomputed.



We calculate

&N (.,
m(0) = — Z {IogS(yN)(w; 0) + f,%”}, (10)
Sy )
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where Qp is the set of Fourier frequencies 27w//N where
I=0,...,N—1.

This set of frequencies can be restricted when suitable using
local frequencies (Robinson (1995)), and time-frequencies
(van Bellegem and Dahlhaus (2006)).
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Modelling oceanographic data Y

Data from the Global Drifter Program (GDP,
www.aoml.noaa.gov/phod/dac).

The measurements include position, and often sea surface
temperature, salinity and atmospheric pressure. In total, over
11,000 drifters have been deployed, with approximately 100
million position recordings obtained.

The analysis of this data is crucial to our understanding of
ocean circulation (Lumpkin 2007), which is known to play a
primary role in determining the global climate system
(Andrews, 2012).

The Lagrangian velocity time series is modelled as a
complex-valued time series, with the following 6-parameter
power spectral density:

22 B?
w2 R (2R

S(w) = (11)

where w is given in cycles per day.
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Figure: Time-frequency of bivariate data.
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Real data
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Real data
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Real data #
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Simulated data

Sample size (N) 128 256 512 1024 2048 4096
Stationary frequency domain likelihood

Bias (r) -2.3481e-02  -3.2400e-02  -4.8112e-02 -6.9807e-02 -9.3332e-02 -1.1161e-01
Variance (1) 1.8163e-03  1.0760e-03  1.1422e-03  1.5550e-03  1.4045e-03  8.2890e-04
MSE (r) 2.3677e-03  2.1258e-03  3.4570e-03  6.4280e-03  1.0115e-02  1.3286e-02
Bias (o) 2.5577e-02  5.4988e-02  8.9480e-02  1.3241e-01 1.7432e-01  2.0651e-01
Variance (o) 3.3898e-03  2.8178e-03  3.3471e-03  4.4660e-03  3.9885e-03  2.1609e-03
MSE (o) 4.0440e-03  5.8415e-03  1.1354e-02  2.1999e-02  3.4376e-02  4.4809e-02
CPU time (sec) 1.3083e-02  1.7776e-02  2.5743e-02  4.3666e-02  5.0948e-02  8.6940e-02

Nonstationary frequency domain likelihood

Bias (r) -4.6158e-03  -2.0129e-03  -1.4184e-03 -2.9047e-04 -2.6959e-04  8.8302e-05
Variance (r) 1.6508e-03 .5379%e-04  3.9819e-04  2.0710e-04  1.0674e-04  5.3236e-05
MSE (r) 1.6721e-03  7.5784e-04  4.0020e-04  2.0719e-04  1.0681e-04  5.3244e-05
Bias (o) -1.4999e-02  -8.8581e-03  -4.4302e-03 -2 92¢-03  -1.4125e-03  -9.1703e-04
Variance (o) 2.2543e-03  1.1989e-03  6.4245e-04  3.4775e-04  2.0113e-04  1.0759e-04
MSE (o) 2.4793e-03  1.2774e-03  6.6208e-04  3.5415e-04  2.0312e-04  1.0843e-04

CPU time (sec) 1.6814e-02  2.0272e-02  3.1397e-02  5.5925e-02

8.9997e-02

2.4147e-01

Zt = I’Zt_l + €¢.

here g; is a phase-shift.



What makes this work #

Assume that Y; is a modulated process. We say that Y; is a
modulated process with a highly significant correlation contribution
if for any 7 there exists two constants N > 7 and a; > 0 such
that for N > N,

N—-1—1

1
N Z 8t8t+r
t=0

> ar. (13)

With this definition, the performance of the Whittle likelihood can
be understood.



Traditional local stationary facilitates straight averaging of
summary statistics, thereby facilitating inference.

This opens up new and interesting questions in asymptotic
statistics, which feed back into other areas

Well-motivated theory drives new algorithms, interpretations
for approaches that already see wide use in data science
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