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Abstract

Motivated by the analysis of high-dimensional neuroimaging signals located over
the cortical surface, we introduce a novel Principal Component Analysis technique
that can handle functional data located over a two-dimensional manifold. For this
purpose a regularization approach is adopted, introducing a smoothing penalty co-
herent with the geodesic distance over the manifold. The model introduced can be
applied to any manifold topology, can naturally handle missing data and functional
samples evaluated in different grids of points. We approach the discretization task
by means of finite element analysis and propose an efficient iterative algorithm for
its resolution. We compare the performances of the proposed algorithm with other
approaches classically adopted in literature. We finally apply the proposed algorithm
to resting state functional magnetic resonance imaging data, showing that a cross-
validation approach justifies the presence of the penalization term in the analysis of
human brain connectome data.

1 Introduction

The recent growth of data arising from neuroimaging has led to profound changes in the
understanding of the brain. Neuroimaging is a multidisciplinary activity and the role
of statistics in its success should not be underestimated. Much of the work to date has
been to determine how to use statistical models in high-dimensional settings that arise
out of such imaging modalities as functional Magnetic Resonance Imaging (fMRI) and
Electroencephalography (EEG). However, it is becoming increasingly clear that there is
now a need to incorporate more and more complex information about brain structure
and function into the statistical analysis in order to take understanding of the brain to
the next level.
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Considerable amounts of the brain signal captured, for example, by fMRI arise from
the cerebral cortex. The cerebral cortex is the highly convoluted thin sheet where most
neural activity is focused. It is natural to represent this thin sheet as a 2D surface
embedded in a 3D space, structured with a 2D geodesic distance, rather than the 3D
Euclidean distance within the volume. In fact, functionally distinct areas may be close
to each other if measured with Euclidean distance, but due to the highly convoluted
morphology of the cerebral cortex, their 2D geodesic distance along the cortical surface
can be far greater. While early approaches to the analysis of hemodynamic signals ignore
the morphology of the cortical surface, it has now been well established [Glasser et al.
(2013) and references therein] that is beneficial to analyze neuroimaging data through
the processing of the signals on the cortical surface using surface-constrained techniques.
Classical tools such as non-parametric smoothing models have already been adapted to
deal with this kind of data, see e.g. Chung et al. (2014).

The goal of the present paper is to introduce a novel Principal Component Analysis
(PCA) technique suitable for working with functional signals distributed over curved
domains and specifically over two-dimensional smooth Riemannian manifolds, such as
the cortical surface.

The cortical surface can be extracted from structural Magnetic Resonance Imaging
(MRI), a non-invasive scanning technique to visualize the internal structure of the brain,
rendering it as a 3D image with high spatial resolution. The signal of interest, which we
want to analyse with respect to the surface, comes from fMRI, which detects a Blood
Oxygen Level Dependent (BOLD) signal [Ogawa et al. (1990)] as a series of repeated
measurements in time, yielding a time series of 3D images. An increased neural activity
in a particular area of the brain causes an increased demand for oxygen. As the fMRI
signal is related to changes in the relative ratio of oxy- to deoxy-hemoglobin, due to their
differing magnetic properties, the signal captured within an fMRI scan is considered to
be a surrogate for neural activity and is used to produce activation maps or investigate
brain functional connectivity. The fMRI signal of each individual related to the neuronal
activity in the cerebral cortex is generally mapped on a common template cortical surface,
to allow multi-subject statistical analysis.

In this paper, in particular, we will focus our attention on functional connectivity
(FC). FC maps, on the cortical surface, can be constructed computing the pairwise
correlation between all vertex’s fMRI time-series and the mean time-series of a region of
interest. This will result in one FC map for each subject that provides a clear view of
areas to which the region of interest is functionally connected.

In practice, the template cortical surface is represented by a triangulated surface
that can be considered a discrete approximation of the underlying smooth compact two-
dimensional Riemannian manifold M⊂ R3 modelling the cortical surface. Each resting
state functional connectivity map can be represented by a function xi :M→ R. Once we
have the correlation maps on the cortical surface we want to study how the phenomena
varies from subject to subject. A statistical technique that enables to do that is PCA.
It is natural to contextualize this task in the framework of Functional Data Analysis
[Ramsay and Silverman (2005)].
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The rest of the article is organized as follows. In Section 2 we establish the formal
theoretical properties of Functional PCA (FPCA) to the case of random functions whose
domain is a manifoldM. In Section 3 we introduce a novel FPCA model and propose an
algorithm for its resolution. We then give some simulation results in Section 4, indicating
the performance of our methodology, as compared to other methods in literature. We
then return to the FC maps example in Section 5, to consider how the surface based PCA
analysis might be used in this case and make some concluding remarks in Section 6.

2 Functional principal component analysis

Consider the space of square integrable functions on M: L2(M) = {f : M → R :∫
M |f(p)|2dp <∞} with the inner product 〈f, g〉M =

∫
M f(p)g(p)dp and norm ‖f‖M =∫

M |f(p)|2dp. Consider the random variable X : Ω → L2(M), with mean µ = E[X]
and a finite second moment, i.e.

∫
M E[X2] < ∞. Moreover assume that its covariance

function K(p, q) = E[(X(p)− µ(p))(X(q)− µ(q))] is square integrable. Mercer’s Lemma
[Riesz and Sz.-Nagy (1955)] guarantees the existence of a non-increasing sequence (κj)
of eigenvalues of K and an orthonormal sequence of corresponding eigenfunctions (ψj),
such that ∫

M
K(p, q)ψj(p)dp = κjψj(q), ∀q ∈M. (1)

Moreover K(p, q) =
∑∞

j=1 κjψj(p)ψj(q) for each p, q ∈ M. Thus X can be expanded
as X = µ +

∑∞
j=1 εjψj , where the random variables ε1, ε2, . . . are uncorrelated and are

given by εj =
∫
M{X(p)−µ(p)}ψj(p)dp. This is also known as the Karhunen-Loève (KL)

expansion of X.
The collection (ψj) defines the strongest modes of variation in the random function

X and are called Principal Component (PC) functions. In fact ψ1 is such that

ψ1 = argmax
φ:‖φ‖M=1

∫
M

∫
M
φ(p)K(p, q)φ(q)dpdq,

while ψm, for m > 1, solves an analogous problem with the added constraint of ψm being
orthogonal to the previous m− 1 functions ψ1, . . . , ψm−1, i.e.

ψm = argmax
φ : ‖φ‖M = 1

〈φ, ψj〉M = 0 j = 1, . . . ,m− 1

∫
M

∫
M
φ(p)K(p, q)φ(q)dpdq.

The random variables ε1, ε2, . . . are usually called PC scores.
Another important property of PC functions is the best M basis approximation. In

fact, for any fixed M ∈ N, the first M PC functions of X satisfies

(ψi)
M
m=1 = argmin

({φm}Mm=1:〈φm,φl〉=δml)

E
∫
M

{
X − µ−

M∑
m=1

〈X,φm〉φm
}2

, (2)

where δml is the Kronecker delta, such that δml = 1 for m = l and 0 otherwise.
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Suppose x1, . . . , xn are n smooth samples from X. Usually, for each of these functions,
only noisy evaluations xi(pj) on a fixed discrete grid of points p1, . . . , ps are given. In this
setting, we will now recall the two standard approaches to FPCA. The pre-smoothing
approach and the regularized PCA approach.

The pre-smoothing approach is based on the two following steps. In the first step
the observations associated to each function are smoothed, in order to obtain smooth
representations of x1, . . . , xn. Then the sample mean x̄ = n−1

∑
i xi and the sample

covariance K̂(p, q) = 1
n

∑n
i=1(xi(p) − x̄(p))(xi(q) − x̄(q)) are used to estimate µ and K

respectively. Applying the orthonormal basis expansion to K̂ is then possible to write
K̂(p, q) =

∑∞
j=1 κ̂jψ̂j(p)ψ̂j(q) with p, q ∈ M. The sequence ψ̂1, ψ̂2, . . . is usually treated

as an approximation of ψ1, ψ2, . . .. The estimates ψ̂1, ψ̂2, . . . are computed through the
characterization

∫
M K̂(p, q)ψ̂j(p)dp = κ̂jψ̂j(q), which is solved by the discretization of

the problem on a fine grid or by the basis expansion of estimated smooth functions.
In the case where the domain is an interval of the real line, a theoretical study on the
accuracy of ψ̂j as an estimate of ψj is offered for example in Hall and Hosseini-Nasab
(2006).

Define the n×s matrix X = (xi(pj)), the column vector µ = ( 1
n

∑n
i=1 xi(pj)) of length

s, the n×M matrix A = (〈Xi, φm〉) and the s×M matrix Φ = (φm(pj)). Let 1 denote
the column vector of length n with all entries equal to 1. The empirical counterpart of
the objective function in (2) becomes

1

n
‖X− 1µT −AΦT ‖2F , (3)

where ‖ · ‖F is the Frobenius norm, defined as the square root of the sum of the squares
of its elements. This last formulation gives a natural way to deal with the fact that only
pointwise and noisy evaluations xi(pj), i = 1, . . . , n, j = 1, . . . , s of the underlying func-
tional samples are usually available. However, it does not incorporate any information
on the smoothness of the functional data. In fact, considering the Singular Value Decom-
position (SVD) of X− 1µT = UDVT , it can be shown that the minimizing arguments
of (3) are Φ̂ = V and Â = UD, thus the obtained formulation is a multivariate PCA
applied to the data-matrix X.

The regularized PCA approach consists on adding a penalization term to the classic
formulation of the PCA, in order to recover a desired feature of the estimated under-
lying functions. In particular the formulation (3) has shown a great flexibility for this
purpose. Examples of models where a sparseness property is assumed on the data are
offered for instance in Jolliffe et al. (2003); Zou and Hastie (2005); Shen and Huang
(2008). In the specific case of functional data analysis the penalization term usually
encourages the PC functions to be smooth. Examples of PCA models that explicitely
incorporates a smoothing penalization term are given by Rice and Silverman (1991); Sil-
verman (1996); Huang et al. (2008). The cited works deal with functions whose domain
is a limited interval in R. Zhou and Pan (2014) recently proposed a smooth FPCA for
two-dimensional functions on irregular planar domains. Their approach is based on a
mixed effects model that specifies the PC functions as bivariate splines on triangulations
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and the PC scores as random effects. Here we propose a FPCA model that can handle
real functions observable on a two-dimensional manifold. In particular we shall consider
a smoothing penalty operator, coherent with the 2D geodesic distances on the manifold.
This leads to the definition of a model that can fully exploit the information about the
geometry of the manifold.

3 Smooth FPCA over two-dimensional manifolds

Suppose the sample of n functions xi : M → R is observed at a fixed set of points
p1, . . . , ps inM (this will be relaxed later). Let f be a real valued and twice differentiable
function and u = {ui}i=1,...,n a n-dimensional real column vector. We propose to estimate

the first PC function f̂ :M→ R and the associated PC scores vector û, by solving the
equation:

(û, f̂) = argmin
u,f

n∑
i=1

s∑
j=1

(xi(pj)− uif(pj))
2 + λuTu

∫
M

∆2
Mf (4)

where ∆M is the Laplace-Beltrami operator for functions defined over the manifold M.
The Laplace-Beltrami operator is a generalization of the standard Laplacian to the case
of functions defined on surfaces in Euclidean spaces. It is related to the local curvature
of f on M. The parameter λ controls the trade-off between the empirical term of the
objective function and roughness penalizing term. The uTu term is justified by some
invariance considerations on the objective function as done in the case of one dimensional
domains, in Huang et al. (2008). Consider the transformation (u → cu, f → 1

cf), with
c a constant, and the transformation (X → cX,u → cu), where X = (xi(pj)). Then
the objective function in (4) is invariant with respect to the first transformation, while
the empirical and the smoothness terms are re-scaled by the same coefficient with the
second transformation.

The subsequent PCs can be extracted sequentially by removing the preceding es-
timated components from the data matrix X. This allows the selection of a different
penalization parameter λ for each PC estimate. We will refer to this model as Smooth-
Manifold FPCA (SM-FPCA).

3.1 Iterative algorithm

Here we present the numerical algorithm for the resolution of the model introduced
above. Our approach for the minimization of the functional (4) can be summarized in
the following two steps:

• Splitting the optimization in a finite dimensional optimization in u and an infinite-
dimensional optimization in f ;

• Approximating the infinite-dimensional solution thanks to a Surface Finite Element
discretization.
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Let f s be the vector of length s such that f s = (f(p1), . . . , f(ps))
T . The expression

in (4) can be rewritten as

(û, f̂) = argmin
u,f

‖X− ufTs ‖2F + λuTu

∫
M

∆2
Mf. (5)

A normalization constraint must be considered in this minimization problem to make
the representation unique, as in fact multiplying u by a constant and dividing f by the
same constant does not change the objective function. For simplicity of implementation,
we here optimize in u under the constraint ‖u‖2 = 1, and leave the infinite-dimensional
optimization in f unconstrained.

Our proposal for the minimization of the criterion (5) is to alternate the minimization
of u and f in an iterative algorithm:

Step 1 Estimation of u given f . For a given f , the minimizing u of the objective function
in (5) is

u =
Xf s

‖f s‖22 + λ
∫
M∆2

Mf
, (6)

and the minimizing unitary-norm vector u is

u =
Xf s
‖Xf s‖2

. (7)

Step 2 Estimation of f given u. For a given u, solving (5) with respect to f is equivalent
to finding the f that minimizes

Jλ,u(f) = fTs f s + λ

∫
M

∆2
Mf − 2fTs XTu. (8)

Step 1 is basically the classical expression of the score vector given the loadings vector,
where in this case the loading vector is given by f s, the evaluations of the PC function
in p1, . . . , ps. The problem in Step 2 is not trivial, consisting in an infinite-dimensional
minimization problem. Let zj denote the jth element of the vector XTu, then minimizing
the functional in (8) is equivalent to minimizing

s∑
j=1

(
zj − f(pj)

)2

+ λ

∫
M

∆2
Mf (9)

This problem consists in estimating a smooth scalar field f defined on a manifold,
starting from noisy observations zj at points pj . In the special case whereM is a sphere
or a sphere-like surface, that is M = {σ(v) = ρ(v)v : v ∈ S} where S ⊂ R3 is the unit
sphere centered at the originand, this smoothing problem has been considered for instance
by Wahba (1981) and Alfeld et al. (1996). Moreover, the functional (9) is considered
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for instance by Ettinger et al. (2015) and Dassi et al. (2015). Here M is respectively a
manifold homeomorphic to an open ended cylinder and a manifold homeomorphic to a
sphere. In the later two works the field f is estimated by first conformally recasting the
problem to a planar domain and then discretizing it by means of planar finite elements,
generalizing the planar smoothing model in Ramsay (2002). Our approach is also based
on a Finite Element (FE) discretization, but differently from Ettinger et al. (2015) and
Dassi et al. (2015), we construct here a FE space directly on the triangulated surface
MT that approximates the manifold M, i.e. we use surface FE, avoiding any flattening
step and allowing the formulation to be applicable to any manifold topology.

3.2 Surface Finite Element discretization

Assume, for clarity of exposition only, that M is a closed surface, as in our motivating
application. The case of non-closed surfaces can be dealt with by considering some
appropriate boundary conditions as done for instance in the planar case in Sangalli et al.
(2013). Consider the linear functional space H2(M), the space of functions in L2(M)
with first and second weak derivatives in L2(M). The infinite dimensional part of the
estimation problem can be reformulated as follows: find f̂ ∈ H2(M) such that

f̂ = argmin
f∈H2(M)

Jλ,u(f). (10)

Proposition 1. The solution f̂ ∈ H2(M) exists and is unique and is such that

s∑
j=1

ϕ(pj)f̂(pj) + λ

∫
M

∆Mϕ∆Mf̂ =

s∑
j=1

ϕ(pj)

n∑
i=1

xi(pj)ui (11)

for every ϕ ∈ H2(M).
As detailed in the Supplementary Material, the key idea is to minimize Jλ,u(f) by

differentiating this functional with respect to f . This leads to (11), that characterizes
the estimate f̂ as the solution of a linear fourth-order problem.

Consider now a triangulated surface MT , union of the finite set of triangles T ,
giving an approximated representation of the manifold M. Figure 1 for instance shows
the triangulated surface approximating the left hemisphere of a template brain. We
then consider the linear finite element space V consisting in a set of globally continuous
functions over MT that are linear affine where restricted to any triangle τ in T , i.e.

V = {v ∈ C0(MT ) : v|τ is linear affine for each τ ∈ T }.

This space is spanned by the nodal basis ψ1, . . . , ψK associated to the nodes ξ1, . . . , ξK ,
corresponding to the vertices of the triangulation MT . Such basis functions are la-
grangian, meaning that ψi(ξj) = 1 if i = j and ψi(ξj) = 0 otherwise. Setting f =
(f(ξ1), . . . , f(ξK))T and ψ = (ψ1, . . . , ψK)T , every function f ∈ V has the form

f(p) =

K∑
k=1

f(ξk)ψk(p) = fTψ(p) (12)
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Figure 1: The triangulated surface approximating the left hemisphere of the template
brain. The mesh is composed by 32K nodes and by 64K triangles

for each p ∈MT . The surface finite element space provides a finite dimensional subspace
of H1(M) [Dziuk (1988)]. To use this finite element space to discretize the infinite-
dimensional problem (11), that is well posed in H2(M), we first need a reformulation of
(11) that only involves first order derivatives. This can be obtained by introducing an
auxiliary function g = ∆Mf , splitting the equation (11) into a coupled system of second
order problems and finally integrating by parts the second order terms. The details of
this derivation can be found in the supplementary material. The discrete estimators
f̂h, ĝh ∈ V are then obtained solving

∫
MT
∇MT f̂h∇MT ϕh −

∫
MT

ĝhϕh = 0

λ
∫
MT
∇MT ĝh∇MT vh +

s∑
j=1

f̂h(pj)vh(pj) =
s∑

j=1

vh(pj)
n∑

i=1

xi(pj)ui
(13)

for all ϕh, vh ∈ V . Define the s×K matrix Ψ = (ψk(pj)) and the K×K matrices R0 =∫
MT (ψψT ) and R1 =

∫
MT (∇MT ψ)(∇MT ψ)T . Then exploiting the representation (12)

of functions in V we can rewrite (13) as a linear system. Specifically the Finite Element
solution f̂h(p) of the discrete counterpart (13) is given by f̂h(p) = ψ(p)T f̂ where f̂ is the
solution of [

ΨTΨ λR1

λR1 −λR0

] [
f̂
ĝ

]
=

[
ΨTXTu

0

]
(14)

Solving (14) leads to
f̂ = (ΨTΨ + λR1R

−1
0 R1)

−1ΨTXTu. (15)

Although this last formula is a compact expression of the solution, it is preferable to
compute the solution from the linear system (14) due to the sparsity property of its left-
hand side. As an example, in the simulations and the application shown is Sections 4-5,
respectively less then 1% and less then 0.1% of the elements in the matrix in the left
hand side of (14) are different from zero, allowing a very efficient solution of the linear
system.

In the model introduced, we assume that all the observed functions xi :M→ R are
sampled on the common set of points p1, . . . , ps ∈M. Suppose moreover, p1, . . . , ps ∈M
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coincide with the vertices of the approximating triangulated surfaceMT . In this particu-
lar case, an alternative approach could consist of interpreting the points p1, . . . , ps ∈MT
as the nodes of a graph linked by the edges of the triangulation and considering the model
(4) with a discrete smoothness operator term instead of the Laplace-Beltrami operator
(see e.g. Belkin and Niyogi (2001) for the choice of the penalization term and Deng
Cai et al. (2011) for an application to matrix decomposition). However, thanks to its
functional nature, the formulation (4) can be easily extended to the case of missing data
or sparsely sampled functional data. Suppose now each function xi is observable on a
set of points pi1, . . . , p

i
si , then the natural extension of the model (4) becomes

(û, f̂) = argmin
u,f

n∑
i=1

si∑
j=1

(xi(p
i
j)− uif(pij))

2 + λuTu

∫
M

∆2
Mf.

Following the same procedure, we can achieve an analogous algorithm based on the
following two steps.

Step 1 Estimation of the unitary-norm vector u given f .

u such that ui =

∑si
j=1 xi(p

i
j)f(pij)√∑n

i=1(
∑si

j=1 xi(p
i
j)f(pij))

2
.

Step 2 Estimation of f given u.
f = fTψ with f such that [

L λR1

λR1 −λR0

] [
f
g

]
=

[
DTu

0

]
where

L =


n∑
i=1

si∑
j=1

u2iψ1(p
i
j)ψ1(p

i
j) . . .

n∑
i=1

si∑
j=1

u2iψ1(p
i
j)ψK(pij)

. . .
n∑
i=1

si∑
j=1

u2iψK(pij)ψ1(p
i
j) . . .

n∑
i=1

si∑
j=1

u2iψK(pij)ψK(pij)



D =


s1∑
j=1

ψ1(p
1
j )x1(p

1
j ) . . .

sn∑
j=1

ψ1(p
n
j )xn(pnj )

. . .
s1∑
j=1

ψK(p1j )x1(p
1
j ) . . .

sn∑
j=1

ψK(pnj )xn(pnj )


3.3 SM-FPCA Algorithm

The algorithm for the resolution of the model SM-FPCA (4) can be summarized in the
following steps.
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Algorithm 1 SM-FPCA Algorithm

1: Initialization:

(a) Computation of Ψ, R0 and R1

(b) Perform the SVD: X = UDVT

(c) f s ← V[:, 1], where V[:, 1] are the loadings of the first PC

2: Scores estimation:

u← Xf s
‖Xf s‖2

3: PC function’s estimation: f such that[
ΨTΨ λR1

λR1 −λR0

] [
f
g

]
=

[
ΨTXTu

0

]
4: PC function’s evaluation:

f s ← ΨT f

5: Repeat Steps 2–4 until convergence
6: Normalization:

f̂(p)← fTψ(p)

‖fTψ‖L2(MT )

The model (4) is a non-convex minimization problem in (u, f). However, in the
previous section we proved the existence and uniqueness of the minimizing f given u
and vice-versa. This implies that the objective function is non-increasing under the
update rules of the Algorithm 1. Since the first guess of the PC function, given by the
SVD, is usually a good starting point, in all our simulations no convergence problem has
been detected.

3.4 Parameters selection

The proposed models have a smoothing parameter λ > 0 that adjusts the trade-off
between the fidelity of the estimate to the data via the sum of the squared errors and the
smoothness of the solution via the penalty term. The problem of choosing the smoothing
parameter is common to all smoothing problems.

The flexibility given by the smoothing parameter can be seen as an advantageous
feature; by varying the smoothing parameter the data can be explored on different scales.
However, in many cases a data-driven automatic method is necessary. In the following
simulations we consider two different criteria. The first approach consists on a K-fold
cross validation. The data matrix X is partitioned by rows into K roughly equal groups.
For each group of data k = 1, . . . ,K the dataset can be split into a validation set
Xk, composed of the elements of the kth group, and a training set, composed of the
remaining elements. For different smoothing parameters, the loading function f−k is
estimated from the training dataset. Given the estimated loading function f−k, the
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associated score vector uk is computed on the validation dataset. Since f−k has been
computed on the training dataset, uk should be computed on the validation dataset via
the formula (6), where

∫
M∆2

M can be approximated by gTR0g, being gh(p) = ψ(p)Tg
the auxiliary function approximating ∆Mf . Finally we select the value of the parameter
λ that minimizes the following score:

CV (λ) =

K∑
k=1

∑n
i=1

∑s
j=1 xi(pj)− uki f−k(pj))2

np
. (16)

The second approach is based on the minimization of a generalized cross-validation
(GCV) criteria integrated on the regression step of the iterative algorithm. Denoting
S(λ) = ΨT (ΨTΨ + λR1R

−1
0 R1)

−1ΨT the GCV score is defined as

GCV(λ) =
1

s

‖(I− S(λ))(XTu)‖2

(1− 1
s tr{S(λ)})2

.

While the K-fold approach is generally slower, this does not require the inversion of any
matrix. This is an advantageous feature, since generally the inverse of sparse matrix is
not sparse. It is thus applicable also to datasets X with a large number of columns s.

Another parameter that must be chosen in the application of the algorithm is the
number of PCs to be considered for the dimension reduction of the data. A classical
approach is to select this parameter on the basis of cumulated explained variance of the
PC. While in the ordinary PC, the scores vectors are uncorrelated and their loadings
are orthogonal, in our formulation neither the loadings are explicitly imposed to be
orthogonal nor the PC scores to be uncorrelated. Let Û be the n × k matrix such
that the columns of Û are the first k PC scores vectors. Without the uncorrelation
assumption, it is meaningless to compute the total variance explained by the first k

PCs by tr(Û
T
Û). To overcome this problem Zou et al. (2004) propose to remove linear

dependence between correlated PC scores vectors, by regression projection. Thus they
compute the QR decomposition of Û as Û = QR and define the adjusted total variance
as
∑k

j=1 R2
jj .

4 Simulation studies

In this section we conduct simulations to assess the performance of the SM-FPCA algo-
rithm as compared to other methods.

We consider as domain of the functional observations a triangulated surfaceMT with
642 nodes that approximates the brainstem. On this triangulated surface we generate the
orthonormal functions v1 and v2, consisting in two eigenfunctions of the Laplace-Beltrami
operator, as shown in Figure 2. These represent respectively the first and second PC
functions. We then generate n = 50 smooth functions x1, . . . , x50 on MT by

xi = ui1v1 + ui2v2 i = 1, . . . , n, (17)
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Figure 2: From left to right, the triangulated surface representing the brainstem, a plot of
the true first and second PC functions and a plot of a noisy observation on the brainstem.

where ui1, ui2 are independent random variables, distributed as ui1 ∼ N (0, σ21), ui2 ∼
N (0, σ22), with σ1 = 4 and σ2 = 2. They represent the PC scores.

The smooth functions xi are sampled at locations pj ∈ R3 with j = 1, . . . , s coinciding
with the nodes of the triangulates surface. Moreover at each of these points has been
added to the functions a Gaussian noise with mean zero and standard deviation σ = 0.1
to obtain the noisy observations denoted with xi(pj). We are interested in recovering the
smooth PC functions v1 and v2 from these noisy observations over MT . We compare
the proposed SM-FPCA technqiue to two alternative approaches.

The first basic approach we consider is a simple multivariate PCA (MV-PCA) ap-
plied to the data-matrix X. The PC functions are thus obtained by piecewise linear
interpolation over the mesh MT . Finally they are normalized to have unitary norm in
L2(MT ).

A second natural approach is based on a pre-smoothing of the noisy observations that
tries to recover the smooth functions xi, i = 1, . . . , n from their noisy observations xi(pj),
followed by a MV-PCA on the denoised evaluations of the functions on pj , j = 1, . . . , s.
The smoothing problem for a field defined on a Riemannian manifold is not trivial. In this
case the smoothing technique applied is Iterated Heat Kernel (IHK) smoothing [Chung
et al. (2005)]. The heat kernel smoothing of the noisy observation xi(pj), is given by
Kη × xi(pj) =

∫
MKη(p, q)xi(pj)dq, where η is the smoothing parameter and Kη is the

heat kernel, whose analytic expression can be extracted from the eigenfunctions of the
Laplace-Beltrami operator. However, for numerical approximation, it can shown that for
η small and for q close to p we have

Kη(p, q) ≈
1

(2πη)
1
2

exp[−d
2(p, q)

2η2
].

12



The desired level of smoothing can be reached after k iterations, thanks to the following
property: Kk

η × f = Kη × . . . × Kη × f = K√kη. For a fixed bandwidth η, the level
of smoothing is determined by an optimal number of iterations selected via the F-test
criterion outlined in Chung et al. (2005). In these simulations the bandwidth has been
set at η = 2.5, heuristically selecting the one with the best performance after some initial
pilot studies. We will refer to this approach as IHK-PCA.

The proposed SM-FPCA technique is implemented as follows. For each PC we run
Algorithm 1 with 15 iterations of the steps 2-4. For the choice of the optimal smoothing
parameter λ, both K-fold, with K = 5, and GCV approaches have been applied.

The reconstructed PC functions, using the three different approaches are shown in
Figures 3-4. It is evident that applying the MV-PCA yields to a reconstruction far from
the true, because of the absence of any spatial information. The reconstruction through
the IHK-PCA approach and the SM-FPCA model are considerably more satisfactory.

Figure 3: From left to right, contours of the first PC function reconstructed respectively
with MV-PCA, IHK-PCA, SM-FPCA GCV and SM-FPCA K-fold. From a visual in-
spection, MV-PCA shows unsatisfactory results, while a better estimation is achieved by
IHK-PCA and SM-FPCA. In particular SM-FPCA shows an almost optimal reconstruc-
tion of the contours’ horizontal pattern in the original first PC function.

13



Figure 4: From the left to the right, contours of the second PC function reconstructed
respectively with MV-PCA, IHK-PCA, SM-FPCA GCV and SM-FPCA K-fold. A visual
inspection confirms that a better estimation is achieved by IHK-PCA and SM-FPCA
respect to MV-PCA.

Figure 5: Boxplots summarizing the performance of IHK-PCA and SM-FPCA. For the
SM-FPCA both GCV and K-fold have been applied for the selection of the smoothing
parameter.
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While the poor performance of the MV-PCA is evident, to assess the performance of
the other two methods, we apply them to 100 datasets generated as previously detailed.
The quality of estimated individual surfaces is then measured using the mean square
error (MSE) over all the locations pj , j = 1, . . . , s. MSEs are also used to evaluate the
reconstruction of the PC scores vectors. Another performance measure used is the princi-
pal angle between the subspace spanned by the estimated PC functions and the subspace
spanned by the true PC functions, as used in Shen and Huang (2008). Intuitively, the
principal angle measures how similar two subspaces are. For this purpose we construct
the s× 2 matrices V = (vi(pj)) and V̂ = (v̂i(pj)), where v̂i is the ith estimate of the true
PC function vi. Then we compute the orthonormal set of basis QV and QV̂ from the QR

decomposition of V and V̂. The principal angle is defined as the angle cos−1(ρ), where
ρ is the minimum singular value of QT

V̂QV. The results are summarized in the boxplots
in Figure 5, which compares the IHK-PCA and SM-FPCA algorithms with respect to
the reconstruction’s errors of the PC functions v1 and v2, the PC scores u1 = (ui1) and
u2 = (ui2), the reconstructed signals xi = ui1v1 +ui2v2 and the principle angles between
the subspaces spanned by the true and estimated PC functions.

The boxplots highlight the fact that SM-FPCA provides the best estimates of the PC
functions and corresponding scores vectors. The K-fold approach to the choice of the
smoothing parameter in the SM-FPCA model performs better then the GCV approach.

5 Application

The data set which we consider in this paper arises from the Human Connectome Project
Consortium [Essen et al. (2012)], which is collecting data such as structural scans, resting-
state and task-based functional MRI scans, and diffusion-weighted MRI scans from a
large number of healthy volunteers to help elucidate the understanding of normal brain
function. Many preprocessing considerations have already been resolved in the so called
minimally preprocessed dataset. Among the various preprocessing pipelines applied to
the HCP original data, of particular interest for us is the one named fMRISurface [Glasser
et al. (2013)]. This pipeline provides a transformation of the 3D structural MRI and 4D
signal from the functional MRI scan, so to enable the application of statistical analysis
techniques on brain surfaces. For each subject, the personal cortical surface is extracted
as a triangulated surface from the structural MRI and to each vertex of this mesh is
associated a BOLD time-series derived from the BOLD signal of the underlying gray-
matter ribbon. The cortical surfaces extracted are aligned to a template cortical surface
generated from the cortical surfaces of 69 healthy adults. In practice this cortical surface
is represented by two triangulated surfaces with 32k vertices, one for each hemisphere.
In Figure 1 the left hemisphere is shown. Through this anatomical transformation map,
the patients’ BOLD time-series, on the cortical surface, are coherently located to the
vertices of the template cortical surface. The fMRI signal used for our analysis has been
acquired in absence of any task and for this reason is also called resting state fMRI.
Finally each time-series is filtered to the band of frequencies [0.009, 0.08]Hz.

As already mentioned in Section 1, a classic approach in the study of the resting state
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fMRI, is to exploit the time dimension of the data, for the extraction of a connectivity
measure among the different parts of the cortical surface. A standard choice for this
purpose is the computation of the temporal correlation. It first consists of identifying
a Region of Interest (ROI) on the cortical surface. For each subject, all the time-series
in the ROI are used to find a representative mean time-series. To each vertex of the
cortical surface we associate the pairwise correlation of the time-series located in that
vertex with the time-series representative of the ROI. Finally each correlation value
is transformed using Fisher’s r-to-z transformation, yielding a resting state functional
connectivity (RSFC) map for each subject. The total number of subjects considered for
this analysis is 491.

For the choice of the ROI, we consider the cortical parcellation derived in Gordon
et al. (2014), where a group-avarage boundary map of the cortical surface is derived from
resting state fMRI (Figure 6). The identified cortical areas are unlikely to correspond
the individual parcellation of each subject, since they are derived from a group average
study. However, they can serve as a reasonable ROIs in individual subjects. The parcel
that served as ROI in the following analysis is visible in red in Figure 6. For the chosen

Figure 6: Parcellation of the cortical surface derived in Gordon et al. (2014). In red
the Region of Interest chosen for the computation of the RSFC maps. This region is
localized on an area of the cerebral cortex called precuneus.

ROI, a snapshot of the RSFC map of one subject is shown in Figure 7.
The mean RSFC map is shown in Figure 8. As expected high correlation values are

visible inside the ROI. The mean RSFC over 491 subjects shows a variability coherent
with the parcellation, in the sense that the vertices inside each parcel show similar values.
We wish now to understand which are the main modes of variation of this RSFC maps
among the different subjects, by applying a PCA.

The first three PC functions, estimated with SM-FPCA, are shown in Figures 9-10-11
as compared to the PC functions derived from MV-PCA and IHK-PCA. The choice of
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Figure 7: A snapshot of the RSFC map of one subject.

Figure 8: The mean RSFC map computed over 491 subject. As expected, high correlation
values are visible inside the ROI.

the smoothing parameter for the SM-FPCA is based on the K-fold cross validation, with
K = 5.

The PC functions estimated from the MV-PCA shows an excessive variability, since
the sample size is not sufficiently large to deal with the extremely high dimensionality
of the data. In fact, even recent attempts to model the subject variability from resting
state fMRI leads to the conclusion that spatial mismatches, introduce by the alignment
problem, are one of the biggest sources of currently observable differences between sub-
jects [Harrison et al. (2015)]. This registration process can result in misalignments, due
to the lack to functional regions being perfectly coincident or due to situations where the
local topology is strongly different among subjects. These misalignments can introduce
fictitious effects on the computed PC functions. Data misalignment is a well known prob-
lem in FDA [Ramsay and Silverman (2005)]. For functional data with one-dimensional
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domains, typical approaches are based on shifting or (monotone) transformations of the
domain of each function. But neither shifting nor monotonic transformations make sense
on a generic non-euclidean domain, so it is not clear how to generalize the standard FDA
approaches. The introduction of a smoothing penalty in the PCA model should reduce
the variability effects due to misalignment. In fact the smoothing parameter in the SM-
FPCA algorithm can be seen as a further degree of freedom that allows a multiscale
analysis, meaning that by increasing the smoothing penalty parameter is possible to
constrain the results to show only the macroscopical effects of the phenomena and to
remove the artifacts introduced by the preprocessing steps.

The PC functions estimated through IHK-PCA and SM-FPCA seem both to resolve
the problem of the presence of some residual noise in the PC function estimates. However,
we would like to emphasize the fact that, for instance, the third PC function computed
with IHK-PCA shows some differences with the one computed with SM-FPCA. This is
probably due to the fact that an individual pre-smoothing approach with the presented
data tends to delete part of the information contained in the single RSFC map, while
the SM-FPCA model incorporates all the noisy data as is and introduces a smoothness
penalization directly on the PC function estimates. Contrary to MV-PCA and IHK-
PCA, in all three PC functions, SM-FPCA shows a satisfactory level of smoothness,
without deleting sharper changes in some locations, which may indicate the presence of
a boundary between two cortical areas, since it is well known that the cortical surface is
organized in a number of interacting cortical areas.

Figure 9: From left to right, two views of the first PC function computed respectively
with MV-PCA, IHK-PCA and SM-FPCA.
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Figure 10: From left to right, two views of the second PC function computed respectively
with MV-PCA, IHK-PCA and SM-FPCA.

Figure 11: From left to right, two views of the third PC function computed respectively
with MV-PCA, IHK-PCA and SM-FPCA.
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For the purpose of interpretation of the PC functions we might prefer to plot the
functions µ± 2σf , where µ denotes the mean RSFC map, σ denotes the standard devia-
tion of the PC scores vector and f denotes the associated PC function. In Figure 12 we
show the described plot for the first PC function. We can observe that while the high
correlation value in the ROI and inferior parietal are in first approximation preserved
from subject to subject, a high variability between subjects can be observed in the areas
surrounding the ROI and the inferior parietal, which is understood due to individual
inter-subject differences [Buckner et al. (2008) and references therein].

Figure 12: From left to right, two views of µ − 2σf , µ, µ + 2σf , where µ denotes the
mean RSFC map, σ denotes the standard deviation of the first PC scores vector and f
denotes the first PC function.

6 Discussion

In this paper we introduce a novel PCA technique that can handle functional data
located over a two-dimensional manifold. The adopted approach is based on a regularized
PCA model. In particular a smoothness penalty term that measures the curvature of
a function over a manifold is introduced and the estimation problem is solved via an
iterative algorithm that uses finite elements. The motivating application is the analysis
the RSFC maps over the cortical surface, derived from fMRI. In this setting the adoption
of a MV-PCA suffers of the high-dimensionality of the data with respect to the relatively
small sample size. The adoption of an approach based on individual pre-smoothing of the
functional samples, followed by a MV-PCA, gives smooth estimates of the PC functions;
However, this pre-smoothing step tends to remove also part of useful information from
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the original data. The proposed SM-FPCA instead returns smooth PC functions that
nevertheless are able to capture localized features of the estimated PC function.

A further important feature of SM-FPCA is its computational efficiency. The most
computationally intensive operation is the resolution of the linear system in the iterative
algorithm. However this linear system enjoys two important properties. The first is the
independence between its dimension, related to the number of nodes of the triangular
mesh, and the number of point-wise observations available for each functional sample or
the sample size. In fact, since its resolution time depends mostly on the mesh size, a mesh
simplification approach [Dassi et al. (2015)] could be adopted to speed up the algorithm.
The second and most fundamental property is the sparsity of the linear system. The use
of a sparse solver allows an efficient computation of the solution. For instance, in the
final application the dimension of the linear system is 64K×64K. Despite its dimension,
the solving time is less than a second. The application of the entire algorithm, for a fixed
smoothing parameter, with 15 iterations is less than 15 seconds on a Intel Core i5-3470
3.20GHz workstation, with 4 GB of RAM.

A Appendices

A.1 Well-posedness of the estimation problem (10)

Proof. Proposition 1. We exploit a characterization theorem [Braess (2007), chapter 2]
which states that if G is a symmetric, positive definite, bilinear form on a vector space
L, and F is a linear functional on L, then v is the unique minimizer of

G(v, v)− 2F (v)

in V if and only if
G(v, ϕ) = F (ϕ) for all ϕ ∈ L. (18)

Moreover, there is at most one solution to problem (18).
The desired result follows from application of the above theorem considering the

vector space L = H2(M), the symmetric, positive definite, bilinear form G(f, ϕ) :=∑p
j=1 ϕ(pj)f(pj) + λ

∫
M∆ϕ∆f and the linear functional

F (f) =
∑p

j=1 f(pj)
∑n

i=1 xi(pj)ui. Positive definitiveness of the form G, in H2(M), is

shown by the following argument. Suppose that G(f, f) = 0 for some f ∈ H2(M); then∫
M∆2

Mf = 0 and
∑p

j=1 f(pj)
2 = 0. Each element f ∈ H2(M) can be written such

that, for any p ∈ M, f(p) = f̃(p) + c, with f̃ ∈ U = {f̃ ∈ H2(M) :
∫
M f̃ = 0} and c a

constant. The solution of ∆Mf̃ = 0 in U exists unique and is f̃ = 0 [Dziuk and Elliott
(2013)]. Thus

∫
M∆2

Mf = 0 for f ∈ H2(M) implies that f(p) = c, for any p ∈ M, then∑p
j=1 f(pj)

2 = pc2. But pc2 = 0 if and only if c = 0, so f(·) = 0. Consequently, G is

positive definite on H2(M).
The estimator f̂ is thus

p∑
j=1

ϕ(pj)f̂(pj) + λ

∫
M

∆Mϕ∆Mf̂ =

p∑
j=1

ϕ(pj)
n∑
i=1

xi(pj)ui (19)
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for every ϕ ∈ H2(M).

A.2 Reformulation of the estimation problem

The problem of finding f ∈ H2(M) that satisfies condition (19) for every ϕ ∈ H2(M)
can be rewritten as the problem of finding (f̂ , g) ∈ H2(M)× L2(M) that satisfies:{∑p

j=1 ϕ(pj)f̂(pj) + λ
∫
M(∆ϕ)g =

∑p
j=1 ϕ(pj)

∑n
i=1 xi(pj)ui∫

M vg −
∫
M v(∆f̂) = 0

(20)

for all (ϕ, v) ∈ H2(M)×L2(M). In fact, if the pair of functions (f̂ , g) ∈ H2(M)×L2(M)
satisfies condition (20) for all (ϕ, v) ∈ H2(M)×L2(M), then f̂ also satisfies problem (19).
In contrast, if f̂ ∈ H2(M) satisfies problem (19), then the pair (f̂ ,∆f̂) automatically
satisfies the two equations in problem (20). Owing to integration by part and to the fact
that M has no boundaries, we get:∫

M
(∆Mϕ)g = −

∫
M
∇Mϕ∇Mg∫

M
v(∆Mf̂) = −

∫
M
∇Mv∇Mf̂

Now, asking the auxiliary function g and of the test functions v to be such that
g, v ∈ H1(M), the problem of finding f̂ ∈ H2(M) that satisfies (19) for each ϕ ∈ H2(M)
can be reformulated as finding (f̂ , g) ∈ (H1(M) ∩ C0(M))×H1(M){∑p

j=1 ϕ(pj)f̂(pj) + λ
∫
M∇ϕ∇g =

∑p
j=1 ϕ(pj)

∑n
i=1 xi(pj)ui∫

M vg −
∫
M∇v∇f̂ = 0

(21)

for all (ϕ, v) ∈ (H1(M)∩C0(M))×H1(M); Moreover, the theory of problems of elliptic
regularity ensure that such f̂ still belongs to H2(M) [Dziuk and Elliott (2013) and
reference therein]. Finally the discrete estimators f̂h, ĝh ∈ V ⊂ H1(M) are obtained
solving 

∫
MT ∇MT f̂h∇MT ϕh −

∫
MT ĝhϕh = 0

λ
∫
MT ∇MT ĝh∇MT vh +

s∑
j=1

f̂h(pj)vh(pj) =
s∑
j=1

vh(pj)
n∑
i=1

xi(pj)ui

for all ϕh, vh ∈ V . A generic function in V can be written as the linear combination of
the finite number of basis spanning V . This allows the solution f̂h(p) = ψ(p)T f̂ to be
characterized by the linear system (14) in the original paper.
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A.3 Simulation on the sphere

Here we present some further simulation studies on a domainM that is a sphere centered
on the origin and with radius r = 1, approximated by the triangulated surface MT in
Figure 13.

Figure 13: The triangulated surface approximating the sphere with 488 points.

We generate n = 50 smooth functions x1, . . . , x50 on MT by

xi = ui1v1 + ui2v2, i = 1, . . . , n

where v1 and v2 represent the two PC functions with expressionsv1(x, y, z) = 1
2

√
15
π
xy
r2

v2(x, y, z) = 3
4

√
35
π
xy(x2−y2)

r4

and ui1, ui2 represent the PC scores, generated independently and distributed as ui1 ∼
N(0, σ21), ui2 ∼ N(0, σ22) with σ1 = 4, σ2 = 2. The PC functions are two components of
the Spherical Harmonics basis set, so they are orthonormal on the sphere, i.e.

∫
M v2i = 1

for each i ∈ {1, 2} and
∫
M vivk = 0 for each i 6= k with i, k ∈ {1, 2}. The PC functions

are plotted in Figure 14. The functions xi are sampled at locations coinciding with the
nodes of the mesh in Figure 13. At these locations, a Gaussian white noise with standard
deviation σ = 0.1 has been added to the true function xi. We are then interested in
recovering the smooth PC functions v1 and v2 from these noisy observations.
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Figure 14: From the left to the righta plot of the true first and second PC functions.

We apply the proposed SM-FPCA method, choosing the optimal smoothing param-
eter λ, both with the K-fold and with GCV. We compare to the approach based on
pre-smoothing followed by MV-PCA on the denoised evaluations of the functions at
the locations pj , j = 1, . . . , p. In this case, the smoothing techniques used is Spherical
Splines [Wahba (1981)], using the implementation in the R package mgcv. The smooth-
ing parameter choice is based on the GCV criterion. We will refer to this approach as
SSpline-PCA. The results are summarized in Figure 15.
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Figure 15: Boxplots summarizing the performance of SSpline-PCA and SM-FPCA. For
the SM-FPCA both GCV and K-fold has been applied for the selection of the smoothing
parameter.

The best estimates of the first two PC functions and corresponding scores are provided
by the proposed SM-FPCA with selection of the smoothing parameter base on the K-
fold approach. SSpline-PCA does a comparable job on the first principal component,
but a significantly worst on the second. A possible explanation for this is the fact that
SSpline-PCA tends to over-smooth the data, due to the low signal-to-noise setting of
the simulations. This results in good performances for the first PC, but causes a loss
of information that worsen the estimation of the second PC. The measure based on the
computation of the principal angle between the original space spanned by {vi}i=1,2 and
the estimated PC functions {v̂i}i=1,2 emphasizes the good performance of the introduced
algorithm.
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