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Fundamental question

How can we model rapidly-varying processes in time?

Ingredients

1 Mechanisms that generate data

2 Structure that facilitates analysis

3 Tools that can be understood

parameters of the driving process using likelihood-based methodologies. Note that the more trivial approach
for analysis, simply dividing the observed process by the modulation sequence, would fail due to the composite
nature of real-world processes, and possible zero values in the modulation sequence.

Anticipating our application to oceanographic surface flow measurements, we present a novel generaliza-
tion of modulated processes for isotropic bivariate processes, or complex-valued processes that are said to be
proper (Schreier and Scharf, 2010). The wealth of possible structure in multivariate processes is considerable.
Inherent documented challenges in modelling include producing valid joint representations (Tong, 1973, 1974,
Priestley and Tong, 1973). We shall approach this problem by modulating both processes under consideration
simultaneously, thus automatically removing such problems.

Having set up our model of modulated processes with a significant correlation contribution, we show
how a modified version of a frequency-domain likelihood allows us to consistently estimate parameters with
a high degree of computational e�ciency. More specifically, the Whittle likelihood for stationary Gaussian
processes is an approximation of the exact likelihood that turns out to be consistent and can be computed in
O(N logN). We adapt this pseudo-likelihood to our class of models, making use of the expected periodogram.
We conserve the N logN computational cost in the minimization procedure, except for a pre-computational
step of order N2 operations.

We apply this method to an important dataset measuring ocean currents. There are only a handful of
observational platforms capable of providing continuous global coverage of the Earth’s oceans and so it is
critical that we fully utilize these datasets to advance our understanding. One of these studies is the Global
Drifter Program (GDP, www.aoml.noaa.gov/phod/dac) (Hansen and Poulain, 1996), consisting of freely
drifting instruments, or “drifters”. Fig. 1 shows positions from multiple trajectories obtained from drifters at
or near the equator. From the trajectories, we may calculate velocities of the instruments. Depending on the
spatial position of the instrument the velocity of the instrument may or may not be approximately stationary
(Sykulski et al., 2016b). For example, regions near the equator are likelier to yield drifter trajectories with
highly nonstationary velocities where locally stationary modelling breaks down. Instead, to capture such
rapid time-variability, we use a modulated stochastic process from our class of nonstationary models. This
model allows us to capture the rapid frequency modulation of oscillations known to geophysicists as “inertial
oscillation”. An example of such a time series can be seen in Fig. 1(c).

We organize the paper into the following sections. Section 2 introduces the model family of modulated
processes, the standard assumption of asymptotical stationarity, and our generalized class called modulated
processes with a significant correlation contribution. This section also includes extensions to bivariate pro-
cesses. Section 3 describes computationally e�cient pseudo-likelihood estimation procedures. In Section 4
we apply our methods to real-world oceanographic data and various numerical experiments; and in Section
5 we apply our methods to a simulated missing data problem. Finally, concluding remarks can be found in
Section 6.

Figure 1: (a) The trajectories of the 200 drifters from the Global Drifter Program, analysed in Section 4.1,
that exhibit the greatest change in Coriolis frequency (f) across 60 inertial cycles; (b) a segment of data of
the meridional (latitudinal) positions over time from Drifter ID#43594; and (c) a segment of data of the
meridional velocities from this drifter in cm/s. The figure is produced using (Lilly, 2016).
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Gaussian Time Series

• We start from the analysis of a single
time series {Xt}.

• To understand this object, we wish to
model its mean

E(Xt) = µ(t), (1)

and its covariance

Cov(Xt ,Xt−τ ) = c(τ, t). (2)

• c(τ, t) describes evolving dependence.

• If this is evolving rapidly, then we need to
analyze smaller portions of data together.



Rapid variation
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processes, the standard assumption of asymptotical stationarity, and our generalized class called modulated
processes with a significant correlation contribution. This section also includes extensions to bivariate pro-
cesses. Section 3 describes computationally e�cient pseudo-likelihood estimation procedures. In Section 4
we apply our methods to real-world oceanographic data and various numerical experiments; and in Section
5 we apply our methods to a simulated missing data problem. Finally, concluding remarks can be found in
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How to model time series variation

• Simplest model is modulation (Parzen
(1963) & Priestley (1965)).

• Modulation can make Yt quite
nonstationary.

• Let {gt} be a (known?) deterministic
sequence, and Xt a stationary latent
processes. Take

Yt = gtXt , t ∈ Z. (3)

• Why not divide by gt?

• gt may be zero and/or we observe Yt

superimposed with yet another process.



More modelling

• We can always calculate

ĉ
(N)
Y (τ) =

1

N

N−τ−1∑

t=0

YtYt+τ . (4)

• This has expectation

c̄
(N)
Y (τ) = c

(N)
g (τ) · c(N)

X (τ). (5)

• Leads to the natural notion of an
asymptotically stationary process. {Yt} is
an asymptotically stationary process
(Parzen) if there exists a fixed function
γ(τ) such that

lim
N→∞

c̄
(N)
Y (τ) = γ(τ).



Fourier analysis

• As Xt is stationary it admits the
representation

Xt = µ+

∫ 1
2

− 1
2

dZx(f )e2iπft , (6)

where the basic quantity of interest is the
spectrum S(f ).

• Here S(f ) df = E{|dZx(f )|2}, and
dZx(f ) is uncorrelated across f .

• Traditional theory claims Xt is “nearly
stationary”, where S(f ) is evolving very
slowly, and S(f ) 7→ St(f ).

• This has the consequence of dZx(f )
nearly uncorrelated with dZx(f ′) if
|f − f ′| >> ε.
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Whittle Pseudo-Likelihood
• If Xt was Gaussian, then we could infer its parameters using

its likelihood function

`T (θ) = −1

2
log |Σ(θ)| − 1

2
XTΣ(θ)−1X , Σ(θ) = EXXT .

(7)
• Would like to form

θ̂(t) = arg max
θ∈Θ

`t(θ).

• Instead commonly the Whittle likelihood is used:

`W (θ) = −
∑

ω∈ΩN

{
log SX (ω; θ) +

Ŝ
(N)
X (ω)

SX (ω; θ)

}
, (8)

where ΩN is the set of Fourier frequencies 2πl/N where
l = 0, . . . ,N − 1.

• Computationally efficient; convenient; but far from exact (see
Sykulski et al (2016), Anitescu et al. (2012), Stein et al.
(2013), Dutta and Mondal (2014)). Speed versus
computation.



And what of modulation?

• If we calculate the DFT JY (ω), then its empirical variance has
expectation

S
(N)
Y (ω;θ) = E

{
Ŝ

(N)
Y (ω) | g0, · · · , gN−1;θ

}
.

• This has form

S
(N)
Y (ω;θ) =

∫ π

−π
SX (ω − λ;θ)

∣∣∣G (N)(λ)
∣∣∣
2
dλ, ∀ω ∈ [−π, π),

(9)
and

G (N)(ω) =
1√
N

N−1∑

t=0

gte
−iωt .

• We can compute S
(N)
Y (ω;θ) in N log(N) once G has been

precomputed.



Debiased

• We calculate

`M(θ) = −
∑

ω∈ΩN

{
log S

(N)
Y (ω; θ) +

Ŝ
(N)
Y (ω)

S
(N)
Y (ω; θ)

}
, (10)

where ΩN is the set of Fourier frequencies 2πl/N where
l = 0, . . . ,N − 1.

• This set of frequencies can be restricted when suitable using
local frequencies (Robinson (1995)), and time-frequencies
(van Bellegem and Dahlhaus (2006)).



•  10,000+ drifters 
• Data going back to 1979 
• Over 60 million data points 

Global Drifter Program 
 

2 

Objective Useful Summary 
Statistics 



Global Drifter Program 
 

3 



Modelling oceanographic data

• Data from the Global Drifter Program (GDP,
www.aoml.noaa.gov/phod/dac).

• The measurements include position, and often sea surface
temperature, salinity and atmospheric pressure. In total, over
11,000 drifters have been deployed, with approximately 100
million position recordings obtained.

• The analysis of this data is crucial to our understanding of
ocean circulation (Lumpkin 2007), which is known to play a
primary role in determining the global climate system
(Andrews, 2012).

• The Lagrangian velocity time series is modelled as a
complex-valued time series, with the following 6-parameter
power spectral density:

S(ω) =
A2

(ω − f )2 + λ2
+

B2

(ω2 + h2)α
, (11)

where ω is given in cycles per day.



Figure: Time-frequency of bivariate data.
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Fig. 7. Time varying spectra of the south Pacific drifter displayed in Fig. 6 (on a decibel scale, where red
is high energy and blue is low energy): (a) spectrum of observed data; (b) modelled spectrum by using our
stochastic model (the local inertial frequency is represented by a white curve); we display only the range of
frequencies used (ω∆2Ω) in the estimation of parameters.

the inertial oscillation is shown to shift significantly from the theoretical frequency particularly
between days 600 and 900. Inspecting Fig. 7 in more detail, we can see that there are two bands
of energy during this time period near the inertial frequency.

A closer examination (which is not shown) reveals that the higher frequency band is attributed
to tidal energy and occurs during a time period when the drifter passes over a relatively shallow
region of the ocean. Our stochastic model has selected this frequency for the inertial peak and
has used a higher damping parameter c (see Fig. 8) then to capture effects from both energy
bands. Another artefact from tides can be seen around day 1150 where there is semidiurnal
tidal energy near frequency ω∆= 1; see Fig. 7. Our model has captured this energy with the
Matérn process using an unusually low slope parameter α (see Fig. 8). Although our model
is apparently misspecified in these regions, this is because of tidal effects which have not been
correctly removed from the data. In addition to correctly identifying frequency shifts from the
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Fig. 8. Time varying parameter values of the model fits of Fig. 7, with 95% confidence intervals calculated
from the Hessian matrix: (a) estimated inertial frequency ωo ( ) and inertial frequency f ( ); (b)
OU amplitude A ( ) and Matérn amplitude B ( ); (c) OU damping c ( ) and Matérn damping
h ( ); (d) slope parameter α ( )
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Fig. 8. Time varying parameter values of the model fits of Fig. 7, with 95% confidence intervals calculated
from the Hessian matrix: (a) estimated inertial frequency ωo ( ) and inertial frequency f ( ); (b)
OU amplitude A ( ) and Matérn amplitude B ( ); (c) OU damping c ( ) and Matérn damping
h ( ); (d) slope parameter α ( )



Real data
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Figure 2: Whittle likelihood fits of the stationary model (in black) and nonstationary model (in red) to the
periodogram (in blue) for segments of data from drifter IDs (a) #92629, (b) #81896, (c) #71845, and (d)
#44312. The solid black vertical line is the average inertial frequency, and the dashed vertical black lines
are the minimum and maximum observed inertial frequency. The models are fit in the frequency range of 0
to 0.8 cycles per day in (a)–(c), and from 0 to 1.5 cycles per day in (d) as this drifter is at a higher latitude
of 37� S where inertial oscillations occur at a frequency of about 1.2 cycles per day. The fitted models are
shown in solid lines within the frequency range, and in dashed lines outside the frequency range.

where � = 1/12 is the sampling rate corresponding to the 2hr grid. The model of (66) is a nonstationary
complex AR(1) process, and is the discrete-time analogue of the complex-OU process. The complex AR(1)
process can therefore be used to directly estimate {A,�} in a complex-OU process with evenly sampled

data, where care must be taken to correctly transform between the complex-OU parameters {A,�,!
{f}
t } and

the complex AR(1) parameters {r,�,!{f}
t }. The details of these transformations are supplied in the online

material.
We only perform the modulation on the complex-OU component in (65); the Matérn component for the

turbulent background is unchanged and is considered to be stationary in the window, as it is not in general
a↵ected by changes in !{f}. The two components are however observed in aggregation, and for this reason
we cannot simply demodulate the observed nonstationary signal to recover a stationary signal. Instead, to
jointly estimate the parameters {A,�, B, h,↵}, we first compute the modulating sequence, gt, using (27) in
Proposition 6 and accounting for the sample rate �:

gt = ei
Pt

u=1 2⇡�!{f}
u , (67)

for t = 0, · · · , N � 1. Then we compute the expected periodogram of the complex AR(1) using (21) and
(22) in Proposition 4. Next, we compute the expected periodogram of the stationary Matérn as outlined
in Sykulski et al. (2016b). Note that this can also be computed from the autocovariance of a Matérn using
Proposition 4, by setting gt = 1 for all t. Finally, we additively combine the expected periodograms and then
maximize the Whittle likelihood, given in (32), to obtain parameter estimates for {A,�, B, h,↵}.
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Figure 3: QQplot of the ratio periodogram over spectral density verses the exponential distribution for
drifter IDs (a) #92629, (b) #81896, (c) #71845, and (d) #44312. The data is limited to the frequency
ranges that were used for the fitting procedure.

Figure 4: (a) is a scatter plot of the damping timescale 1/� as estimated by the stationary and nonstationary
models, for each of the 200 trajectories displayed in Fig. 1; (b) is a histogram of the di↵erence between the
log-likelihoods of the nonstationary and stationary models for the same 200 trajectories.

4.1.3 Parameter estimation with equatorial drifters

We now compare the likelihood estimates and parameter fits for the stationary model of (65), with those for
the nonstationary version of this model described in the previous subsection. In Fig. 2, we display Whittle
likelihood fits of each model to segments of data from drifters IDs #92629, #81896, and #71845, all of which
are among the trajectory segments displayed in the left-hand panel of Fig. 1. We also include model fits to
a 60-inertial period window of drifter ID#44312, which is investigated in detail in Sykulski et al. (2016b), as
this is a South Pacific drifter from a more quiescent drifter from a region of the ocean in which !{f} does not
change. For the South Pacific drifter, both fits are almost equivalent (and hence are overlaid), capturing the
sharp peak in inertial oscillations at approx 1.2 cycles per day. For the three equatorial drifters, the stationary

model has been fit with the inertial frequency set to the average of !
{f}
t across the window. Here in each

case the stationary model is a poor fit to the observed time series spectra. The nonstationary modulated
model, which incorporates changes in !{f}, is a much better fit, capturing the spreading of inertial energy
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Real data

between the maximum and minimum values of !
{f}
t . This is compared by the likelihood values

In this analysis, we have excluded frequencies higher than 0.8 cycles per day from all the likelihood fits to
the equatorial drifters (the Nyquist is 6 cycles per day for this 2-hourly data), to ignore contamination from
tidal energy occurring at 1 cycle per day or higher, which is not part of our stochastic model. Furthermore,
we also only fit to the side of the spectrum dominated by inertial oscillations, as the model is not always seen
to be a good fit on the other side of the spectrum. The modelling and inference approach is therefore semi-

parametric (Robinson, 1995). In Fig. 3 we provide the Quantile-Quantile plots of the ratio Ŝ
(N)
Z (!)/SZ(!; ✓̂)

verses the exponential distribution. Only frequencies within the estimation range are shown. If the process is
Gaussian, the periodogram is expected to follow an exponential distribution. The four plots indicate a good
fit, except for the tail of the distribution of drifter ID #81896, suggesting that our assumption of Gaussianity
is correct for the dataset.

The significance of the misfit of the stationary model is that parameters of the model may be under- or
over-estimated as the model attempts to compensate for the misfit. For example, the damping parameter of
the inertial oscillations, �, will likely be overestimated in the stationary model, as it is used to try to capture
the spread of energy around !{f}, which is in fact mostly caused by the changing value of !{f}, rather than
a true high value of �.

To investigate this further, we perform the analysis with all 200 drifters shown in Fig. 1. In Fig. 4(a), we
show a scatter plot of the estimates of 1/�, known as the damping timescale, as estimated by both models.
In general, the damping timescales are larger with the nonstationary model (consistent with a smaller �),
where the median value is 3.5 days, rather than 1.3 days with the stationary model. Previous estimates of
the damping timescale in the literature have not included data from the equatorial region, so while direct
comparisons are not possible, the former estimates are found to be more consistent with previous estimates
at higher latitudes where values of around 3 days are reported in Elipot et al. (2010), and values ranging
from 2 to 10 days are reported in Watanabe and Hibiya (2002).

The nonstationary model does not require more parameters to be fitted than does the stationary model;
both have 5 unknown parameters. Therefore there is no need to penalize the nonstationary model using
model choice or likelihood ratio tests. Even if the models are not nested, comparing the likelihood of the two
approaches can be informative. We can directly compare the likelihood value of each model using (30) and
(31), i.e. `M (✓̂M ) � `W (✓̂W ). A histogram of the di↵erence between the likelihoods for the 200 drifters is
shown in Fig. 4(b), where positive values indicate that the likelihood of the nonstationary model is higher.
Overall, the nonstationary model has a higher likelihood in 146 out of the 200 trajectories and is therefore
seen to be the better model in general.

There are other regions of the global oceans, in addition to the equator, where the nonstationary methods
of this paper may significantly improve parameter estimates of drifter time series. These include drifters which
follow currents that traverse across di↵erent latitudes such as the Gulf Stream or the Kuroshio. Analysis of
such data is an important avenue of future investigation.
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Figure 5: Trajectories of 9 particles from the dynamical model, with the damping timescale set to 4 days.
All particle trajectories are started at 35� N and 40� W with increasing meridional mean flow from v = 0.1
to v = 0.9 cm/s going from left to right (u is set to zero for this example). The drifters are o↵set in longitude
by 0.02 degrees for representation.
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Simulated dataTable 1: Performance of estimators with the stationary and nonstationary methods for the model of (24) with
�t evolving according to (68)–(70). The parameters are set as r = 0.8, � = 1, � = ⇡/2, � = 1, and A = 1/20.
The results are averaged over 2000 independently generated time series for each sample size N . The average
CPU times for the optimization are given in seconds, as performed on a 2.40Ghz Intel i7-4700MQ processor
(4 cores).

Sample size (N) 128 256 512 1024 2048 4096

Stationary frequency domain likelihood
Bias (r) -2.3481e-02 -3.2400e-02 -4.8112e-02 -6.9807e-02 -9.3332e-02 -1.1161e-01
Variance (r) 1.8163e-03 1.0760e-03 1.1422e-03 1.5550e-03 1.4045e-03 8.2890e-04
MSE (r) 2.3677e-03 2.1258e-03 3.4570e-03 6.4280e-03 1.0115e-02 1.3286e-02
Bias (�) 2.5577e-02 5.4988e-02 8.9480e-02 1.3241e-01 1.7432e-01 2.0651e-01
Variance (�) 3.3898e-03 2.8178e-03 3.3471e-03 4.4660e-03 3.9885e-03 2.1609e-03
MSE (�) 4.0440e-03 5.8415e-03 1.1354e-02 2.1999e-02 3.4376e-02 4.4809e-02
CPU time (sec) 1.3083e-02 1.7776e-02 2.5743e-02 4.3666e-02 5.0948e-02 8.6940e-02

Nonstationary frequency domain likelihood
Bias (r) -4.6158e-03 -2.0129e-03 -1.4184e-03 -2.9047e-04 -2.6959e-04 8.8302e-05
Variance (r) 1.6508e-03 7.5379e-04 3.9819e-04 2.0710e-04 1.0674e-04 5.3236e-05
MSE (r) 1.6721e-03 7.5784e-04 4.0020e-04 2.0719e-04 1.0681e-04 5.3244e-05
Bias (�) -1.4999e-02 -8.8581e-03 -4.4302e-03 -2.5292e-03 -1.4125e-03 -9.1703e-04
Variance (�) 2.2543e-03 1.1989e-03 6.4245e-04 3.4775e-04 2.0113e-04 1.0759e-04
MSE (�) 2.4793e-03 1.2774e-03 6.6208e-04 3.5415e-04 2.0312e-04 1.0843e-04
CPU time (sec) 1.6814e-02 2.0272e-02 3.1397e-02 5.5925e-02 8.9997e-02 2.4147e-01

change �t according to a stochastic process. Specifically, we set

�0 = D(� +A✏t) (68)

�t = D(�t�1 +A✏t), (69)

where � 2 [�⇡,⇡), A > 0, ✏t is a standard normal white noise, and D(·) is the bounding function defined by

D(x) = max{min(x, � +�), � ��}, (70)

where � > 0, and which constrains �t in the interval [���, �+�]. This way the frequencies �t are generated
according to a bounded random walk, i.e. a random walk which is constrained to stay within a fixed interval.
In our simulations we have set � = ⇡/2, � = 1, A = 1/20. We simulate for a range of sample sizes ranging
from N = 128 to N = 4096. For each sample size N , we independently simulate 2000 time series and estimate
{r,�} for each series to report ensemble-averaged biases, errors, and computational times. The results are
reported in Table 1. The bias and Mean Square Error (MSE) of the estimated parameters with the stationary
method are seen to increase with increasing sample size. This is because the random walk of �t increases
the range of �t with larger N , such that the nonstationarity of the time series is increasing. Conversely, the
nonstationary method accounts for these rapidly changing modulating frequencies, and the bias and MSE of
parameter estimates rapidly decrease with increasing N . The average CPU time is only around 5% slower
using the nonstationary method, as the method is still O(N logN) in computational e�ciency.

Finally, we consider the case in which the modulating sequence is only unknown up to a functional form,
and we must also estimate its parameters, along with the parameters of the latent process. We consider the
following parametric form for �t

�t = � +�
2t� (N � 1)

2(N � 1)
. (71)

Therefore �t varies linearly from � � �
2 to � + �

2 . We can then show that for all integer value ⌧ ,

c(N)
g (⌧) =

sin
h

�⌧
2(N�1) (N � ⌧)

i

N sin
h

�⌧
2(N�1)

i e{i(�⌧+ �⌧
2(N�1)}, (72)

which allows the kernel in (6) to be precomputed in O(N) time for all values of ⌧ = 0, · · · , N�1, which helps
speed up the computation of the expected periodogram in the likelihood for the special case of a linearly
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Zt = rZt−1 + εt . (12)

here gt is a phase-shift.



What makes this work

Definition (Modulated process with highly significant
correlation contribution)

Assume that Yt is a modulated process. We say that Yt is a
modulated process with a highly significant correlation contribution
if for any τ there exists two constants Nτ ≥ τ and αt > 0 such
that for N ≥ Nτ ,

∣∣∣∣∣
1

N

N−1−τ∑

t=0

gtgt+τ

∣∣∣∣∣ ≥ ατ . (13)

With this definition, the performance of the Whittle likelihood can
be understood.



Summary

• Traditional local stationary facilitates straight averaging of
summary statistics, thereby facilitating inference.

• This opens up new and interesting questions in asymptotic
statistics, which feed back into other areas

• Well-motivated theory drives new algorithms, interpretations
for approaches that already see wide use in data science
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