Bootstrap percolation and kinetically constrained spin models

With Cristina Toninelli (Dauphine)

Bootstrap percolation and kinetically constrained spin models: critical time scales

Recent years have seen a great deal of progress in understanding the behavior of bootstrap percolation models, a particular class of monotone cellular automata. In the two dimensional lattice there is now a quite complete understanding of their evolution starting from a random initial condition, with a universality picture for their critical behavior. Much less is known for their non-monotone stochastic counterpart, namely kinetically constrained models (KCM). In KCM each vertex is resampled (independently) at rate one by tossing a p-coin iff it can be infected in the next step by the bootstrap model. In particular infection can also heal, hence the non-monotonicity. Besides the connection with bootstrap percolation, KCM have an interest in their own : when p → 0 they display some of the most striking features of the liquid/glass transition, a major and still largely open problem in condensed matter physics.
I will discuss some recent results on the characteristic time scales of KCM as p → 0 and the connection with the critical behavior of the corresponding bootstrap models.

Add to your calendar or Include in your list

How can mathematics help us to understand the behaviour of ants? Read more about the fanscinating work being carri… https://t.co/iCODvvxqE6 View on Twitter