Flux and context-dependent graphs for metabolic networks

With Mariano Beguerisse, Oxford

Flux and context-dependent graphs for metabolic networks

Cells adapt their metabolic state in response to changes in the environment. I will present a systematic framework for the construction of flux graphs to represent organism-wide metabolic networks. These graphs encode the directionality of metabolic fluxes via links that represent the flow of metabolites from source to target reactions. The weights of the links have a precise interpretation in terms of probabilities or metabolite flow per unit time. The methodology can be applied both in the absence of a specific biological context, or tailored to different environmental conditions by incorporating flux distributions computed from constraint-based modelling (e.g., Flux-Balance Analysis). I will illustrate the approach on the central carbon metabolism of Escherichia coli, revealing drastic changes in the topological and community structure of the metabolic graphs, which capture the re-routing of metabolic fluxes under each growth condition.

By integrating Flux Balance Analysis and tools from network science, our framework allows for the interrogation of environment-specific metabolic responses beyond fixed, standard pathway descriptions.

Add to your calendar or Include in your list

How can mathematics help us to understand the behaviour of ants? Read more about the fanscinating work being carri… https://t.co/iCODvvxqE6 View on Twitter