Mixing and cut-off for random walks on finite fields and random polynomials

With Emmanuel Breuillard (Cambridge)

Mixing and cut-off for random walks on finite fields and random polynomials

I will report on joint work with Peter Varjú in which we investigate the ax+b random walk on a finite field F_p. Work from the 1990s by Chung-Diaconis-Graham established good upper bounds on mixing time when a=2. We refine their methods to understand the case when a is arbitrary in F_p. Using our previous work on irreducibility of polynomials of large degree, we obtain sharp bounds for the mixing time and prove, conditionally on the Generalized Riemann Hypothesis, that a sharp cut-off occurs.

Add to your calendar or Include in your list

How can mathematics help us to understand the behaviour of ants? Read more about the fanscinating work being carri… https://t.co/iCODvvxqE6 View on Twitter