## Subsequential limits for Liouville graph distance

### With Alex Dunlap (Stanford)

# Subsequential limits for Liouville graph distance

Liouville quantum gravity (LQG) is a natural model for a two-dimensional continuum random geometry. It originated from work on string theory and conformal field theory in the 1980s. In the past decade, LQG has been rigorously understood as a random measure on a two-dimensional surface, by taking a limit of measures on suitable smooth approximations. However, only at a single special temperature has a metric space structure for LQG been constructed. I will discuss recent work on the tightness of a sequence of natural discretized LQG metrics, the subsequential limits of which thus form natural candidates for a continuum metric for LQG . This is joint work with Jian Ding.

- Speaker: Alex Dunlap (Stanford)
- Tuesday 26 February 2019, 14:00–15:00
- Venue: MR12, CMS, Wilberforce Road, Cambridge, CB3 0WB.
- Series: Probability; organiser: Perla Sousi.