Subsequential limits for Liouville graph distance

With Alex Dunlap (Stanford)

Subsequential limits for Liouville graph distance

Liouville quantum gravity (LQG) is a natural model for a two-dimensional continuum random geometry. It originated from work on string theory and conformal field theory in the 1980s. In the past decade, LQG has been rigorously understood as a random measure on a two-dimensional surface, by taking a limit of measures on suitable smooth approximations. However, only at a single special temperature has a metric space structure for LQG been constructed. I will discuss recent work on the tightness of a sequence of natural discretized LQG metrics, the subsequential limits of which thus form natural candidates for a continuum metric for LQG . This is joint work with Jian Ding.

Add to your calendar or Include in your list

How can mathematics help us to understand the behaviour of ants? Read more about the fanscinating work being carri… https://t.co/iCODvvxqE6 View on Twitter