Non-Reversible Markov Chain Monte Carlo

Researchers: Sergio Bacallado, Sam Power, Torben Sell

Classical Monte Carlo sampling techniques have been devised by constructing a Markov Process which is reversible with respect to the desired target measure. In recent years, however, it has become clear that using _non-reversible_ processes to sample is i) theoretically preferable, and ii) practically feasible. The goal of this project is to i) understand the theoretical properties of existing non-reversible samplers (e.g. Piecewise-Deterministic Markov Processes, such as the Bouncy Particle Sampler), and ii) to devise new non-reversible sampling techniques for different application domains.

Who's involved


How can mathematics help us to understand the behaviour of ants? Read more about the fanscinating work being carri… View on Twitter